Our Services

Get 15% Discount on your First Order

[rank_math_breadcrumb]

10/15pg

2

Outline

Student’s Name

Institutional Affiliation

Course Name

Instructor’s Name

Date


Outline

I. Introduction

A. Definition of digital signatures

B. Importance and applications of digital signatures

C. Thesis statement and overview of the paper

II. Detailed Description of Digital Signatures

A. Cryptographic principles behind digital signatures

1. Public key cryptography

2. Hash functions

B. How digital signatures work

1. Signing process

2. Verification process

C. Types of digital signatures

1. Detached signatures

2. Attached signatures

3. Timestamping

III. Technology Involved in Digital Signatures

A. Cryptographic algorithms used

1. RSA

2. DSA

3. ECDSA

B. Digital signature standards and formats

1. OpenPGP

2. S/MIME

3. XML Signature

C. Software and tools for creating and verifying digital signatures

IV. Future Trends in Digital Signatures

A. Advancements in quantum computing and its impact on digital signatures

B. Integration with blockchain technology

C. Biometric-based digital signatures

D. Mobile and cloud-based digital signature solutions

V. Example Companies Involved in Digital Signatures

A. Adobe Sign

B. DocuSign

C. GlobalSign

D. Entrust Datacard

E. DigiCert

VI. Regulatory Issues Surrounding Digital Signatures

A. Legal recognition of digital signatures

1. E-Sign Act (U.S.)

2. eIDAS (European Union)

B. Compliance with industry-specific regulations

1. HIPAA (healthcare)

2. FERPA (education)

3. GLBA (financial services)

C. Challenges in cross-border recognition of digital signatures

VII. Global Implications of Digital Signatures

A. Enabling secure electronic transactions worldwide

B. Facilitating international trade and e-commerce

C. Enhancing trust and efficiency in digital workflows

D. Potential for digital identity management on a global scale

VIII. Conclusion

A. Recap of the key points discussed

B. Future outlook for digital signatures

C. Importance of continued research and development in the field.

References

Ahmad, M., Rehman, A. U., Ayub, N., Alshehri, M., Khan, M. A., Hameed, A., & Yetgin, H. (2020). Security, usability, and biometric authentication scheme for electronic voting using multiple keys.
International Journal of Distributed Sensor Networks,
16(7), 155014772094402.

Alangari, S., Alshahrani, S. M., Khan, N. A., Alghamdi, A. A., Almalki, J., & Al Shehri, W. (2022). Developing a blockchain-based digitally secured model for the educational sector in Saudi Arabia toward digital transformation.
PeerJ,
8, e1120–e1120.

Cheng, L., Liu, F., & Yao, D. (2019). Enterprise data breach: causes, challenges, prevention, and future directions. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 9(5), e1211.

Chia, J., Chin, J.-J., & Yip, S.-C. (2021). Digital signature schemes with strong existential unforgeability.
F1000Research,
10, 931–931.

Dong, S., Abbas, K., Li, M. Y., & Joarder Kamruzzaman. (2023). Blockchain technology and application: an overview.
PeerJ,
9, e1705–e1705.

Maram, D., Malvai, H., Zhang, F., Jean-Louis, N., Frolov, A., Kell, T., Lobban, T., Moy, C., Juels, A., & Miller, A. (2021, May 1).
CanDID: Can-Do Decentralized Identity with Legacy Compatibility, Sybil-Resistance, and Accountability. IEEE Xplore.

Mor, T., Shapira, R., & Shemesh, G. (2022). Digital Signatures with Quantum Candies.
Entropy,
24(2), 207.

Selvanambi, R., Taneja, B., Agrawal, P., Thakor, H. J., & Karuppiah, M. (2022).
Blockchain‐Based Identity Management Systems. 95–127.

Srivastava, G., Crichigno, J., & Dhar, S. (2019, May 1).
A Light and Secure Healthcare Blockchain for IoT Medical Devices. IEEE Xplore.

Yang, W., Wang, S., Sahri, N. M., Karie, N. M., Ahmed, M., & Valli, C. (2021). Biometrics for Internet-of-Things Security: A Review.
Sensors,
21(18), 6163.

Zhao, W., Shi, R., Shi, J., Huang, P., Guo, Y., & Huang, D. (2021). Multibit quantum digital signature with continuous variables using basis encoding over insecure channels.
Physical Review. A/Physical Review, A,
103(1).

Share This Post

Email
WhatsApp
Facebook
Twitter
LinkedIn
Pinterest
Reddit

Order a Similar Paper and get 15% Discount on your First Order

Related Questions

In Basketball Stars, a player attempts 25 shots in one game.

  In  basketball stars, a player attempts 25 shots in one game. a) If 15 shots are successful, what is the player’s shooting percentage? b) The next game, the player makes 18 out of 30 shots. Compare the two shooting percentages. c) What is the overall shooting percentage across both

problem

Research problems due 9/18 Please follow the instructions carefully for your research problem. Your argument and research input will significantly impact your grade. Ensure that you check for AI-generated content and plagiarism before submitting your paper. AI-generated content should not exceed 10%, and content from external sources should be limited

co task 6

Topic-bitcoin Task 6 Objective: To apply systems thinking principles to analyze a blockchain network and understand its key components, interactions, and dynamics. Assignment Tasks: Select a Blockchain Network: Choose a specific blockchain network or cryptocurrency project to analyze. You can select well-known networks like Bitcoin, Ethereum, or any other blockchain

CO Task 5

In this homework, we explore Naïve Bayes, K-Nearest Neighbors, and Support Vector Machine models. 1) (50 points) Use “credit_Dataset.arff” dataset and apply the Naïve Bayes, K-Nearest Neighbors, and Support Vector Machine technique using the WEKA tool in 2 different settings, including: a. 10 fold-cross validation. b. 80% training. Write a

PhD thesis

I need a comprehensive PhD thesis developed on the topic of “Emotion-Aware Artificial Intelligence and Sustainable Consumer Behavior: A Neuro-AI Marketing Framework for Continuous Green Consumption.”

Co project

· Comprehensive Literature Review: Require a more comprehensive survey of existing approaches. · Comparative Study: Expect more detailed benchmarking of at least 8 to 10 machine learning models. · Additional Experiments: · Conduct feature selection or dimensionality reduction as an extra step. · Explore ensemble methods or advanced techniques beyond

AI

Did AI take place the Software Engineers, HR consultants and Data Entry Jobs?

Data visualization 4 part 2

Follow the attached instructions to complete this work. Unit 4 Assignment Directions: Time Series In this assignment, you will perform a time series analysis in Tableau. · Choose a dataset to analyze based on the requirements provided.   · Once you’ve selected your time series, build a forecast to predict future

Computer Science CG Assignment 8 presentation

Follow the attach instruction to complete this work. Note: Make sure it aligns with Rubric Unit 8 Assignment 2 Directions: Final Presentation Purpose With this presentation, you will gain valuable experience demonstrating your expertise in cybersecurity governance by presenting as a CISO to a hypothetical professional audience.  Directions Begin by incorporating

Computer Science CG assignment 8

Follow the attached assignment to complete the work. Note: Follow Rubric Unit 8 Assignment 1 Directions: Presentation Rehearsal Purpose The rehearsal is your first run-through of your talk. Use the opportunity to de-bug any technical issues with lighting, positioning, and recording. You will not be graded on technical or artistic

Computer Science CG assignment 7 Outline

 Follow the attached document to complete this work Unit 7 Assignment 1 Directions: Professional Presentation Outline Purpose This assignment allows you time to review your research from previous units and organize your thoughts in an outline format. Plan on changing your paper and presentation based on feedback on this outline.  Directions

Computer Science CG assignment 6 ,

Follow the attached direction to complete this work. Note: Make sure it Aligns with Rubric Unit 6 Assignment 2 Directions: Timothy Brown vs. the SEC Purpose The Securities and Exchanges Commission (SEC) is a key US federal agency that regulates financial reporting. In this paper, you will explore how the

Microsoft 365Tenant to Tenant Migration Solution

A smooth tenant-to-tenant migration requires more than just moving mailboxes—it demands precision, security, and planning. With the MailsDaddy Cross-Tenant Migration Service, IT teams can execute a flawless cross-tenant mailbox migration that covers emails, attachments, calendars, contacts, and OneDrive data. It’s built for businesses of every size, ensuring the entire Office

CO Data 3

DECISION TREES for Risk Assessment One of the great advantages of decision trees is their  interpretability. The rules learnt for classification are easy for a person to follow, unlike the opaque “black box” of many other methods, such as neural networks. We demonstrate the utility of this using a  German

Computer Science Homework 1

MMIS 671 Homework 1. Constrained Optimization Problems A company produces 3 types of cables: A, B, and C. In-house production costs per foot of cables A, B, and C are $6, $8, and $10, respectively. The production process requires 5 resources: Drawing, Annealing, Stranding, Extrusion, and Assembly. For each resource,