Consider a binary classification problem with an ensemble learning algorithm that uses simple majority voting among K learned hypotheses. Suppose that each hypothesis has error E and that the errors made by each hypothesis are independent of the others. Calculate a formula for the error of the ensemble algorithm in terms of K and E, and evaluate it for the cases where K =5, 11, and 21 and E=0.1, 0.2, and 0.4. If the independence assumption is removed, is it possible for the ensemble error to be worse than E?
CO Data 2
In this homework, we explore both linear and logistic regression models. Linear Regression 1) (20 points) Apply linear regression on both “diabetes” and “advertising” datasets and write a short paragraph about your findings. 2) (20 points) What is the linear regression model for each case? Logistic Regression 1) (30