Consider a binary classification problem with an ensemble learning algorithm that uses simple majority voting among K learned hypotheses. Suppose that each hypothesis has error E and that the errors made by each hypothesis are independent of the others. Calculate a formula for the error of the ensemble algorithm in terms of K and E, and evaluate it for the cases where K =5, 11, and 21 and E=0.1, 0.2, and 0.4. If the independence assumption is removed, is it possible for the ensemble error to be worse than E?
Week 10
Read attachment for details Week 8 Feedback Overall Feedback Theory is one of the most difficult concept to grasp. Your study must be based on a theory and align with what you are attempting to explore and what you are trying to answer based on previous gaps in research. Well